ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 116513

Темы:   [ Признаки перпендикулярности ]
[ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3-
Классы: 10,11

Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

Прислать комментарий     Решение

Задача 87229

Темы:   [ Признаки перпендикулярности ]
[ Перпендикулярность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости.
Прислать комментарий     Решение


Задача 87230

Темы:   [ Признаки перпендикулярности ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что если одна из двух параллельных прямых перпендикулярна некоторой плоскости, то и вторая прямая перпендикулярна этой плоскости.
Прислать комментарий     Решение


Задача 87231

Темы:   [ Признаки перпендикулярности ]
[ Перпендикулярность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что две прямые, перпендикулярные одной и той же плоскости, параллельны.
Прислать комментарий     Решение


Задача 87233

Темы:   [ Признаки перпендикулярности ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что две различные плоскости, перпендикулярные одной и той же прямой, параллельны.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .