ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На продолжениях медиан AK, BL и CM треугольника ABC взяты
точки P, Q и R, причём
KP =
Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
Даны две непересекающиеся окружности радиусов R и 2R. К ним
проведены общие касательные, которые пересекаются в точке A
отрезка, соединяющего центры окружностей. Расстояние между
центрами окружностей равно
2R
Докажите, что число состоящее из 243 единиц делится на 243.
Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.
|
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]
В треугольнике KLM проведена биссектриса MN. Через вершину M проходит окружность, касающаяся стороны KL в точке N и пересекающая сторону KM в точке P, а сторону LM — в точке Q. Отрезки KP, QM и LQ соответственно равны k, m и q .Найдите MN.
Пусть R — радиус описанной окружности треугольника ABC, ra — радиус вневписанной окружности этого треугольника, касающейся стороны BC. Докажите, что квадрат расстояния между центрами этих окружностей равен R2 + 2Rra.
Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.
Докажите, что равные хорды удалены от центра окружности на равные расстояния.
Продолжения равных хорд AB и CD окружности соответственно за
точки B и C пересекаются в точке P.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке