ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 484]      



Задача 52520

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по центрам описанной, вписанной и одной из вневписанных окружностей.

Прислать комментарий     Решение

Задача 53776

Темы:   [ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Даны две параллельные прямые l и l1. С помощью одной линейки проведите через данную точку M прямую, параллельную прямым l и l1.

Прислать комментарий     Решение

Задача 53944

Темы:   [ Построения одной линейкой ]
[ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4-
Классы: 8,9

Дана окружность и две неравные параллельные хорды. Используя только линейку, разделите эти хорды пополам.

Прислать комментарий     Решение


Задача 53945

Темы:   [ Построения с помощью двусторонней линейки ]
[ Симметрия и построения ]
Сложность: 4-
Классы: 8,9

Постройте центр данной окружности с помощью двусторонней линейки, если известно, что ширина линейки меньше диаметра окружности.

Прислать комментарий     Решение


Задача 54180

Темы:   [ Необычные построения (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Одним прямолинейным разрезом отрежьте от треугольника трапецию, у которой меньшее основание было бы равно сумме боковых сторон.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .