Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 418]      



Задача 73609

Темы:   [ Многочлены (прочее) ]
[ Замена переменных ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 3+
Классы: 9,10,11

Многочлен p и число a таковы, что для любого числа x верно равенство  p(x) = p(a – x).
Докажите, что p(x) можно представить в виде многочлена от  (xa/2)².

Прислать комментарий     Решение

Задача 78056

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Безу. Разложение на множители ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Доказать, что если  p/q – несократимая рациональная дробь, являющаяся корнем полинома  f(x) с целыми коэффициентами, то  p – kq  есть делитель числа  f(k) при любом целом k.

Прислать комментарий     Решение

Задача 98182

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Разрывы функций ]
Сложность: 3+
Классы: 9,10,11

Существует ли кусочно-линейная функция f, определённая на отрезке  [–1, 1]  (включая концы), для которой  f(f(x))= – x  при всех x?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)
Прислать комментарий     Решение


Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Задача 98221

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Уравнения с модулями ]
[ Обратный ход ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

{an} – последовательность чисел между 0 и 1, в которой следом за x идёт  1 – |1 – 2x|.
  а) Докажите, что если a1 рационально, то последовательность, начиная с некоторого места, периодическая.
  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то a1 рационально.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .