Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 829]
Диагональ KM трапеции KLMN в 3 раза длиннее отрезка KP
этой диагонали. Основание KN трапеции в 3 раза длиннее основания LM.
Найдите отношение площади трапеции KLMN к площади треугольника KPR, где R – точка пересечения прямой PN и стороны KL.
В трапецию ABCD (BC || AD) вписана окружность,
касающаяся боковых сторон AB и CD в точках K и L
соответственно, а оснований AD и BC в точках M и N.
а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что KQ || AD.
б) Докажите, что AK·KB = CL·LD.
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.
Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 829]