Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 829]
Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям: l || BC, l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.
|
|
Сложность: 3+ Классы: 7,8,9
|
В четырёхугольнике ABCD углы A и C равны. Биссектриса
угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Докажите, что AX = AD.
Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 829]