ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 829]      



Задача 54976

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

На сторонах AB, BC, CD и DA параллелограмма ABCD взяты соответственно точки M, N, K и L, причём  AM : MB = CK : KD = ½,  а
BN : NC = DL : LA = 1/3.
Найдите площадь четырёхугольника, вершины которого – пересечения отрезков AN, BK, CL и DM, если площадь параллелограмма ABCD равна 1.

Прислать комментарий     Решение

Задача 56883

Темы:   [ Три точки, лежащие на одной прямой ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Докажите, что проекции вершины A треугольника ABC на биссектрисы внешних и внутренних углов при вершинах B и C лежат на одной прямой.

Прислать комментарий     Решение

Задача 64468

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 9,10

Автор: Ивлев Ф.

Пусть A1 и C1 – точки касания вписанной окружности со сторонами BC и AB соответственно, а A' и C' – точки касания вневписанной окружности треугольника, вписанной в угол B, с продолжениями сторон BC и AB соответственно. Докажите, что ортоцентр H треугольника ABC лежит на A1C1 тогда и только тогда, когда прямые A'C1 и BA перпендикулярны.

Прислать комментарий     Решение

Задача 64752

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-

В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.

Прислать комментарий     Решение

Задача 64799

Темы:   [ Необычные построения (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10

Таня вырезала из клетчатой бумаги треугольник, изображённый на рисунке. Через некоторое время линии сетки выцвели. Сможет ли Таня их восстановить, не пользуясь никакими инструментами, а только перегибая треугольник? (Длины сторон треугольника Таня помнит.)

Прислать комментарий     Решение

Страница: << 147 148 149 150 151 152 153 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .