ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Даны отрезки a и b. Постройте такой отрезок x, что
p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1. На какое наименьшее число тетраэдров можно разбить куб? Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности? Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
|
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 165]
Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей?
Пусть AD — биссектриса треугольника ABC. Через вершину A проведена прямая, перпендикулярная AD, а из вершины B опущен перпендикуляр BB1 на эту прямую. Докажите, что периметр треугольника BB1C больше периметра треугольника ABC.
На плоскости даны 16 точек (см. рисунок). а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
На рисунке изображена фигура ABCD .
Стороны AB , CD и AD этой фигуры– отрезки
(причём AB||CD и AD
В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 165]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке