Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 499]
В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A.
Докажите, что треугольники HB1C1 и ABC подобны.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что HaHb || LaLb. Верно ли, что AC = BC?
|
|
Сложность: 3+ Классы: 8,9,10
|
Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD.
Найдите угол AB1C.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник АВСD – вписанный. Лучи АВ и DС пересекаются в точке M, а лучи ВС и AD –
в точке N. Известно, что ВМ = DN.
Докажите, что CM = CN.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 499]