Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 501]
|
|
Сложность: 3+ Классы: 8,9,10
|
Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD.
Найдите угол AB1C.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник АВСD – вписанный. Лучи АВ и DС пересекаются в точке M, а лучи ВС и AD –
в точке N. Известно, что ВМ = DN.
Докажите, что CM = CN.
|
|
Сложность: 3+ Классы: 9,10
|
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
|
|
Сложность: 3+ Классы: 9,10
|
Квадрат ABCD и равнобедренный прямоугольный треугольник AEF (∠AEF = 90°) расположены так, что точка E
лежит на отрезке BC (см. рисунок). Найдите угол DCF.
В четырёхугольнике ABCD ∠B = ∠D = 90° и AC = BC + DC. Точка P на луче BD такова, что BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 501]