ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Марачёв А.

Двое играют в следующую игру. Есть кучка камней. Первый каждым своим ходом берет 1 или 10 камней. Второй каждым своим ходом берёт m или n камней. Ходят по очереди, начинает первый. Тот, кто не может сделать ход, проигрывает. Известно, что при любом начальном количестве камней первый всегда может играть так, чтобы выиграть (при любой игре второго). Какими могут быть m и n?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 58152

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Докажите, что любой n-угольник можно разрезать на треугольники непересекающимися диагоналями.
Прислать комментарий     Решение


Задача 58153

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Докажите, что сумма внутренних углов любого n-угольника равна (n - 2) 180o.
Прислать комментарий     Решение


Задача 58154

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Докажите, что количество треугольников, на которые непересекающиеся диагонали разбивают n-угольник, равно n - 2.
Прислать комментарий     Решение


Задача 58155

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Многоугольник разрезан непересекающимися диагоналями на треугольники. Докажите, что по крайней мере две из этих диагоналей отсекают от него треугольники.
Прислать комментарий     Решение


Задача 66935

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Назовем почти выпуклым несамопересекающийся многоугольник, у которого ровно один внутренний угол больше $180^\circ$.

На плоскости даны $1000000$ точек, никакие три из которых не лежат на одной прямой. Может ли оказаться, что существует ровно десять различных почти выпуклых $1000000$-угольников с вершинами в этих точках?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .