ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть A – некоторая точка пространства, B – ортогональная проекция точки A на плоскость α , l – некоторая прямая этой плоскости. Докажите, что ортогональные проекции точек A и B на эту прямую совпадают. Вершины A и B правильного треугольника ABC
лежат на окружности S, а вершина C — внутри этой окружности.
Точка D лежит на окружности S, причем BD = AB.
Прямая CD пересекает S в точке E. Докажите, что длина
отрезка EC равна радиусу окружности S.
|
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 9759]
Отрезок постоянной длины движется по плоскости
так, что его концы скользят по сторонам прямого угла ABC. По какой
траектории движется середина этого отрезка?
Найдите геометрическое место середин хорд данной
окружности, проходящих через данную точку.
Даны две точки A и B. Две окружности касаются
прямой AB (одна — в точке A, другая — в точке B) и касаются
друг друга в точке M. Найдите ГМТ M.
Точка P перемещается по описанной окружности
квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая,
проходящая через точку Q параллельно AC, пересекает прямую BP в
точке X. Найдите ГМТ X.
Через середину каждой диагонали выпуклого
четырехугольника проводится прямая, параллельная другой
диагонали. Эти прямые пересекаются в точке O. Докажите, что
отрезки, соединяющие точку O с серединами сторон четырехугольника,
делят его площадь на равные части.
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 9759]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке