ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 373]      



Задача 57483

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  c/r $ \geq$ 2(1 + $ \sqrt{2}$).
Прислать комментарий     Решение


Задача 57488

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что если в остроугольном треугольнике  ha = lb = mc, то этот треугольник равносторонний.
Прислать комментарий     Решение


Задача 57489

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

В остроугольном треугольнике ABC проведены высоты  AA1, BB1 и CC1. Докажите, что периметр треугольника A1B1C1 не превосходит половины периметра треугольника ABC.
Прислать комментарий     Решение


Задача 57493

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что треугольник со сторонами a, b и c остроугольный тогда и только тогда, когда  a2 + b2 + c2 > 8R2.
Прислать комментарий     Решение


Задача 57494

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что треугольник остроугольный тогда и только тогда, когда p > 2R + r.
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .