Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 87]
|
|
Сложность: 3 Классы: 6,7,8,9,10,11
|
Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
1, 2, ..., n), это сумма a1b1 + a2b2 + ... + anbn, а наименьшая – сумма a1bn + a2bn–1 + ... + anb1.
[Беспорядки]
|
|
Сложность: 3+ Классы: 9,10,11
|
В классе 30 учеников. Сколькими способами они могут пересесть так, чтобы ни один не сел на своё место?
|
|
Сложность: 3+ Классы: 8,9,10
|
В строку выписаны 40 знаков: 20 крестиков и 20 ноликов. За один ход можно поменять местами любые два соседних знака. За какое наименьшее количество ходов можно гарантированно добиться того, чтобы какие-то 20 стоящих подряд знаков оказались крестиками?
100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 87]