ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что
Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.
Даны две прямые, пересекающиеся в точке O. Найдите
ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые
постоянна.
Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?
Окружность касается стороны BC треугольника ABC в точке M, стороны AC — в точке N, а сторону AB пересекает в точках K и L, причём KLMN — квадрат. Найдите углы треугольника ABC.
Дана четырёугольная пирамида SABCD , основание которой – параллелограмм ABCD . Через середину ребра AB проведите плоскость, параллельную прямым AC и SD . В каком отношении эта плоскость делит ребро SB ? |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 402]
Точки M и N расположены на сторонах AB и AD параллелограмма ABCD, причём AM : MB = 1 : 2, AN : ND = 3 : 2. Отрезки DM и CN пересекаются в точке K.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём AN : AD = 1 : 3, DM : DC = 1 : 4. Отрезки BM и CN пересекаются в точке O. Найдите отношение OM : OB.
Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны.
Докажите, что отрезок, соединяющий середины сторон AB и AC треугольника ABC, и медиана, проведённая из вершины A, делят друг друга пополам.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 402]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке