|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 234]
xn + 1 =
а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен. б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0?
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
В последовательности цифр 1234096... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр.
Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 234] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|