Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 512]
На биссектрисе угла с вершиной C взята точка P. Прямая, проходящая через точку P, высекает на сторонах угла отрезки длиной a и b.
Докажите, что величина 1/a + 1/b не зависит от выбора этой прямой.
|
|
Сложность: 3+ Классы: 8,9,10
|
В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
а) Через какое число узлов она проходит?
б) На сколько частей эта диагональ делится линиями сетки?
|
|
Сложность: 3+ Классы: 8,9,10
|
Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O.
Докажите, что SAOB + SCOD ≤ 2(SAOD + SBOC).
|
|
Сложность: 3+ Классы: 9,10,11
|
Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.
|
|
Сложность: 3+ Классы: 10,11
|
Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.
Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 512]