Страница:
<< 114 115 116 117
118 119 120 >> [Всего задач: 603]
Пусть O – центр описанной окружности остроугольного треугольника ABC. Прямая, проходящая через O и параллельная BC, пересекает AB и AC в точках P и Q соответственно. Известно, что сумма расстояний от точки O до сторон AB и AC равна OA. Докажите, что сумма отрезков PB и QC равна PQ.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые
lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в
одной точке.
Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются
в точке X. Докажите, что CX – биссектриса угла ACN.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Вписанная и вневписанная окружности треугольника ABC касаются стороны BC в точках M и N. Известно, что ∠BAC = 2∠MAN.
Докажите, что BC = 2MN.
|
|
Сложность: 4+ Классы: 7,8,9,10
|
В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если AB = AE = ED = 1, то BC + CD < 1.
Страница:
<< 114 115 116 117
118 119 120 >> [Всего задач: 603]