Страница:
<< 115 116 117 118 119
120 121 >> [Всего задач: 603]
|
|
Сложность: 4- Классы: 8,9,10
|
Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно.
Докажите, что эти три перпендикуляра пересекаются в одной точке.
|
|
Сложность: 4- Классы: 10,11
|
Продолжения медиан AA1, BB1 и CC1 треугольника ABC пересекают его описанную окружность в точках A0, B0 и C0 соответственно. Оказалось, что площади треугольников ABC0, AB0C и A0BC равны. Докажите, что треугольник ABC равносторонний.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.
|
|
Сложность: 4- Классы: 9,10,11
|
Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что KO ⊥ AC.
На стороне BC остроугольного треугольника ABC взята точка K. Биссектриса угла CAK вторично пересекает описанную окружность треугольника ABC в точке L. Докажите, что если прямая LK перпендикулярна отрезку AB, то либо AK = KB, либо AK = AC.
Страница:
<< 115 116 117 118 119
120 121 >> [Всего задач: 603]