ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 448]      



Задача 65417

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10,11

Шесть равносторонних треугольников расположены, как на рисунке.
Докажите, что сумма площадей заштрихованных треугольников равна сумме площадей закрашенных треугольников.

Прислать комментарий     Решение

Задача 65919

Темы:   [ Правильные многоугольники ]
[ Теорема косинусов ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 10,11

Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность.
Что больше: сумма квадратов длин всех сторон пятиугольника или сумма квадратов длин всех сторон двадцатиугольника?

Прислать комментарий     Решение

Задача 98296

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема косинусов ]
[ Против большей стороны лежит больший угол ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

Прислать комментарий     Решение

Задача 102250

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В трапеции CDEA основание CA = 15, основание DE = 9, DA = 13. На описанной около трапеции CDEA окружности взята отличная от A точка B так, что DB = 13. Найдите длину отрезка CB и площадь пятиугольника ABCDE.
Прислать комментарий     Решение


Задача 102257

Темы:   [ Удвоение медианы ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

Определите угол A между сторонами 2 и 4, если медиана, проведённая из вершины A, равна $ \sqrt{7}$.
Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .