Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 416]
|
|
Сложность: 4- Классы: 9,10,11
|
При помощи формулы Лежандра (см. задачу 60553) докажите, что число целое.
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена x3 – 6x2 + ax + a удовлетворяют
равенству
(x1 – 3)3 + (x2 – 3)3 + (x3 – 3)3 = 0.
|
|
Сложность: 4- Классы: 10,11
|
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?
а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.
б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.
|
|
Сложность: 4 Классы: 9,10,11
|
По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
а) Найти среднее количество поражённых мишеней.
б) Может ли среднее количество поражённых мишеней быть меньше n/2?
Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 416]