Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 1027]
|
|
Сложность: 3 Классы: 6,7,8
|
Незнайка утверждает, что он может провести на плоскости 4 прямые так, чтобы их суммарное количество точек пересечения равнялось пяти и 5 прямых так, чтобы их суммарное количество точек пересечения равнялось четырем. Прав ли он?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
|
|
Сложность: 3 Классы: 8,9,10,11
|
На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
а) красными;
б) синими?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Существует ли число, кратное 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 1027]