Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 207]
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан остроугольный треугольник ABC. Окружности с центрами A и C проходят через точку B, вторично пересекаются в точке F и пересекают описанную окружность ω треугольника ABC в точках D и E. Отрезок BF пересекает окружность ω в точке O. Докажите, что O – центр описанной окружности треугольника DEF.
|
|
Сложность: 3+ Классы: 9,10
|
СН – высота остроугольного треугольника АВС, О – центр его описанной окружности. Точка Т – проекция вершины С на прямую АО.
В каком отношении прямая ТН делит сторону ВС?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
а) $N$ = 19;
б) $N$ = 20?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.
|
|
Сложность: 3+ Классы: 10,11
|
n бумажных кругов радиуса 1 уложены на плоскость таким образом, что их
границы проходят через одну точку, причём эта точка находится внутри
области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 207]