ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 303]      



Задача 53930

Темы:   [ Биссектриса угла ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2
Классы: 8,9

Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A.

Прислать комментарий     Решение


Задача 35393

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 9

Найдите множество середин хорд, проходящих через заданную точку A внутри окружности.

Прислать комментарий     Решение

Задача 86515

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 8,9

В выпуклом четырёхугольнике ABCD точки E, F и G – середины сторон AB, BC и AD соответственно, причём  GEABGFBC.  Найдите угол ACD.

Прислать комментарий     Решение

Задача 76482

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 8,9

Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых.
Прислать комментарий     Решение


Задача 52584

Темы:   [ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 8,9

AB — диаметр окружности, BC — касательная. Секущая AC делится окружностью в точке D пополам. Найдите угол DAB.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .