Страница:
<< 1 2
3 >> [Всего задач: 13]
|
|
Сложность: 4- Классы: 9,10,11
|
Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина
n2d, где
d - разность прогрессии, а
n - число ее членов?
|
|
Сложность: 4- Классы: 9,10,11
|
Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина
n2d, где
d - разность прогрессии, а
n - число ее членов?
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана функция
f(
x)
= | 4
- 4
|x|| - 2
. Сколько решений имеет уравнение
f(
f(
x))
= x ?
На координатной плоскости изобразите все точки, координаты
которых являются решениями уравнения: y² – |y| = x² – |x|.
|
|
Сложность: 3+ Классы: 9,10
|
Решить уравнение: + = 1.
Страница:
<< 1 2
3 >> [Всего задач: 13]