ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 101]      



Задача 110142

Темы:   [ Разные задачи на разрезания ]
[ Перегруппировка площадей ]
Сложность: 4
Классы: 7,8,9

Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).
Прислать комментарий     Решение


Задача 111656

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9

На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём  AA1 = BB1 = pAB  и  CC1 = DD1 = pCD,  где
p < ½.  Докажите, что  SA1B1C1D1 = (1 – 2p)SABCD.

Прислать комментарий     Решение

Задача 115655

Темы:   [ Вспомогательные подобные треугольники ]
[ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные фигуры ]
[ Трапеции (прочее) ]
Сложность: 4
Классы: 8,9

Дана трапеция ABCD с основаниями  AD = a  и  BC = b.  Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.

Прислать комментарий     Решение

Задача 54914

Темы:   [ Симметрия помогает решить задачу ]
[ Перегруппировка площадей ]
Сложность: 4+
Классы: 8,9

Точка, расположенная внутри правильного треугольника, удалена от его вершин на расстояния 5, 6 и 7. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 77983

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 4+
Классы: 8,9,10

a, b, c и d — длины последовательных сторон четырёхугольника. Обозначим через S его площадь. Доказать, что

S$\displaystyle \le$$\displaystyle {\textstyle\frac{1}{4}}$(a + b)(c + d ).

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .