Страница:
<< 222 223 224 225
226 227 228 >> [Всего задач: 1308]
|
|
Сложность: 4 Классы: 9,10,11
|
В стране Анчурии, где правит президент Мирафлорес, приблизилось время новых
президентских выборов. В стране ровно 20 миллионов избирателей, из которых
только один процент поддерживает Мирафлореса (регулярная армия Анчурии).
Мирафлорес, естественно, хочет быть избранным, но, с другой стороны, он хочет,
чтобы выборы были "демократическими". "Демократическим голосованием" Мирафлорес называет вот что: все избиратели разбиваются на равные группы; каждая из этих групп вновь разбивается на некоторое количество равных групп, причём большие группы могут разбиваться на разное количество меньших групп, затем эти группы снова разбиваются и т.д. В самых мелких группах выбирают представителя группы "выборщика" для голосования в большей группе: выборщики в этой большей группе выбирают выборщика для голосования в ещё большей группе и т.д. Наконец, представители самых больших групп выбирают президента. Мирафлорес делит избирателей на группы по своей воле и инструктирует своих сторонников, как им голосовать. Сможет ли он так организовать "демократические" выборы, чтобы его выбрали? (В каждой группе выборщики выбирают своего представителя простым большинством. При равенстве голосов побеждает оппозиция.)
|
|
Сложность: 4 Классы: 7,8,9
|
Город представляет собой бесконечную клетчатую плоскость (линии – улицы,
клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть
бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели?
(Максимальные скорости милиции и бандита какие-то конечные, но не известные нам
величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.)
Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?
|
|
Сложность: 4 Классы: 8,9,10
|
В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда
ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
|
|
Сложность: 4 Классы: 8,9,10
|
В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется
важным, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется стратегическим, если он не содержит
меньшего важного набора. Докажите, что множество дорог, каждая из которых
принадлежит ровно одному из двух различных стратегических наборов, образует
важный набор.
Страница:
<< 222 223 224 225
226 227 228 >> [Всего задач: 1308]