Страница:
<< 239 240 241 242
243 244 245 >> [Всего задач: 1308]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?
|
|
Сложность: 3+ Классы: 6,7,8,9,10,11
|
Петя загадал положительную несократимую дробь $x = {m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?
|
|
Сложность: 4- Классы: 8,9,10
|
В городе "Многообразие" живут
n жителей, любые два из которых либо
дружат, либо враждуют между собой. Каждый день не более чем один житель может
начать новую жизнь: перессориться со всеми своими друзьями и подружиться со
всеми своими врагами. Доказать, что все жители могут подружиться.
Примечание. Если
A — друг
B, а
B — друг
C, то
A — также друг
C. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.
|
|
Сложность: 4- Классы: 7,8,9
|
Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус.
На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них.
После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка.
Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
|
|
Сложность: 4- Классы: 6,7,8,9
|
Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: m, n и 0, причём m и n не имеют общих делителей и m < n. Докажите, что с помощью компьютера из них можно получить
а) единицу;
б) любое целое число от 1 до n.
Страница:
<< 239 240 241 242
243 244 245 >> [Всего задач: 1308]