ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На сторонах AB, BC и AD параллелограмма ABCD взяты соответственно точки K, M и L таким образом, что AK : KB = 2 : 1, BM : MC = 1 : 1, АL : LD = 1 : 3. Найдите отношение площадей треугольников KBL и BML.
Вне прямоугольного треугольника ABC на его катетах AC и BC построены квадраты ACDE и BCFG. Продолжение медианы CM треугольника ABC пересекает прямую DF в точке N. Найдите отрезок CN, если AC = 4, BC = 1. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 590]
Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?
x, y – числа из отрезка [0, 1]. Докажите неравенство
Докажите, что для любого x выполнено неравенство x4 – x³ + 3x² – 2x + 2 ≥ 0.
x, y > 0. Через S обозначим наименьшее из чисел x, 1/y, y + 1/x. Какое максимальное значение может принимать величина S?
Пусть A, B и C – три числа, большие 0 и меньшие 1, K – наибольшее из них. Докажите, что 1 – (1 – A)(1 – B)(1 – C) > K.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 590]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке