Страница:
<< 5 6 7 8 9
10 11 >> [Всего задач: 52]
В параллелограмме ABCD известно, что AB = 4, AD = 6. Биссектриса угла BAD пересекает сторону BC в точке M, при этом AM = 4
.
Найдите площадь четырёхугольника AMCD.
В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.
В равнобедренном треугольнике ABC ∠B = 120°. Найдите общую хорду описанной окружности треугольника ABC и окружности, проходящей через центр вписанной окружности и основания биссектрис углов A и C, если AC = 1.
|
|
Сложность: 4- Классы: 7,8,9
|
В треугольнике ABC угол A равен 120°, точка D лежит на биссектрисе угла A, и AD = AB + AC. Докажите, что треугольник DBC – равносторонний.
В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Докажите, что треугольник MNQ – равносторонний.
Страница:
<< 5 6 7 8 9
10 11 >> [Всего задач: 52]