ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1006]      



Задача 73799

Темы:   [ Ориентированные графы ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

В городе одна синяя площадь и n зелёных, причём каждая зелёная площадь соединена улицами с синей и с двумя зелёными, как показано на рисунке. На каждой из 2n улиц ввели одностороннее движение так, что на каждую площадь можно проехать и с каждой – уехать. Докажите, что с каждой площади этого города можно, не нарушая правил, доехать до любой из остальных.

Прислать комментарий     Решение

Задача 78493

Темы:   [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10

a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию:  aik.
Доказать, что   a1 + a2 + ... + an = b1 + b2 + ...

Прислать комментарий     Решение

Задача 78627

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

Испанский король решил перевесить по-своему портреты своих предшественников в круглой башне замка. Однако он хочет, чтобы за один раз меняли местами только два портрета, висящие рядом, причём это не должны быть портреты двух королей, один из которых царствовал сразу после другого. Кроме того, ему важно лишь взаимное расположение портретов, и два расположения, отличающиеся поворотом круга, он считает одинаковыми. Доказать, что как бы сначала ни висели портреты, король может по этим правилам добиться любого нового их расположения.

Прислать комментарий     Решение

Задача 79259

Темы:   [ Степень вершины ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Шахматные доски и шахматные фигуры ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10

На бесконечной шахматной доске проведена замкнутая несамопересекающаяся ломаная, проходящая по сторонам клеток. Внутри ломаной оказалось k чёрных клеток. Какую наибольшую площадь может иметь фигура, ограниченная этой ломаной?

Прислать комментарий     Решение

Задача 97786

Тема:   [ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Мерков А.

В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .