Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 188]
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом
увеличении разность между новым и старым значениями числа была бы больше нуля,
но меньше старого значения. Начальное значение числа равно 2. Выигравшим
считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?
Если сумма квадратов двух целых чисел делится на 7, то каждое из этих чисел делится на 7. Доказать.
|
|
Сложность: 3+ Классы: 9,10
|
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством: – простое при всех k = 1, 2, ..., n?
|
|
Сложность: 3+ Классы: 10,11
|
Барон Мюнхгаузен попросил задумать непостоянный многочлен P(x) с целыми неотрицательными коэффициентами и сообщить ему только значения P(2) и P(P(2)). Барон утверждает, что он только по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 188]