ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 1006]      



Задача 111039

Темы:   [ Объединение, пересечение и разность множеств ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 9,10,11

Дано 101-элементное подмножество A множества  S = {1, 2, ..., 1000000}.
Докажите, что для некоторых  t1, ..., t100  из S множества   Aj = {x + tj | xA;  j = 1, ..., 100}   попарно не пересекаются.

Прислать комментарий     Решение

Задача 115360

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4+
Классы: 9,10

Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Найдите количество удачных натуральных чисел, меньших 2010.

Прислать комментарий     Решение

Задача 61519

Темы:   [ Числа Каталана ]
[ Производящие функции ]
Сложность: 5-
Классы: 9,10,11

Пусть     – производящая функция последовательности чисел Каталана. Докажите, что она удовлетворяет равенству

C(x) = xC²(x) + 1,
и получите явный вид функции C(x).
Определение чисел Каталана можно найти в справочнике.

Прислать комментарий     Решение

Задача 73550

Темы:   [ Числовые таблицы и их свойства ]
[ Теория графов (прочее) ]
Сложность: 5-
Классы: 8,9,10

Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке.

Прислать комментарий     Решение

Задача 98099

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Двоичная система счисления ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Фомин С.В.

В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в каждый, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более пяти дорог.
  а) Докажите, что это возможно.
  б) Докажите, что если в формулировке заменить число 5 на число 4, то желание короля станет неосуществимым.

Прислать комментарий     Решение

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .