|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи С центрами в вершинах прямоугольника построены четыре окружности с радиусами r1, r2, r3, r4, причём r1 + r3 = r2 + r4 < d; d — диагональ прямоугольника. Проводятся две пары внешних касательных к окружностям 1, 3 и 2, 4. Доказать, что в четырёхугольник, образованный этими четырьмя прямыми, можно вписать окружность. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 129]
Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны.
Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE.
Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 129] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|