Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 488]
|
|
Сложность: 5- Классы: 8,9,10
|
В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на n – 1 экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)
|
|
Сложность: 5- Классы: 8,9,10
|
Сумма n положительных чисел x1, x2, x3, ..., xn равна 1.
Пусть S – наибольшее из чисел
Найдите наименьшее возможное значение S. При каких значениях x1, x2, ..., xn оно достигается?
|
|
Сложность: 5- Классы: 9,10
|
Пусть 1 + x + x² + ... + xn–1 = F(x)G(x), где F и G – многочлены, коэффициенты которых – нули и единицы (n > 1).
Докажите, что один из многочленов F, G представим в виде (1 + x + x² + ... + xk–1)T(x), где T(x) – также многочлен с коэффициентами 0 и 1 (k > 1).
|
|
Сложность: 5- Классы: 9,10,11
|
Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше
1
, расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем
1
/ . Докажите, что многоугольники не имеют общих внутренних точек.
|
|
Сложность: 5- Классы: 8,9,10,11
|
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 488]