ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 694]      



Задача 89950

 [Деревья в усадьбе]
Темы:   [ Периодичность и непериодичность ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 6,7

В старой усадьбе дом обсажен по кругу высокими деревьями – елями, соснами и березами. Всего деревьев 96. Эти деревья обладают странным свойством: из двух деревьев, растущих через одно от любого хвойного – одно хвойное, а другое лиственное, и из двух деревьев, растущих через три от любого хвойного – тоже одно хвойное, а другое лиственное. Сколько берёз посажено вокруг дома?

Прислать комментарий     Решение

Задача 97780

Темы:   [ Арифметическая прогрессия ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

Прислать комментарий     Решение

Задача 97915

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Автор: Фольклор

Существует ли такое N и такие  N – 1  бесконечных арифметических прогрессий с разностями  2, 3, 4, ..., N,  что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?

Прислать комментарий     Решение

Задача 98041

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Формулы сокращенного умножения (прочее) ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Автор: Манукян С.

Докажите, что при любом натуральном n  

Прислать комментарий     Решение

Задача 98361

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Обратный ход ]
Сложность: 3
Классы: 7,8,9

Последовательность {xn} определяется условиями:   xn+2 = xn1/xn+1   при  n ≥ 1.
Докажите, что среди членов последовательности найдётся ноль. Найдите номер этого члена.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .