ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 181]      



Задача 64414

Темы:   [ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+

Докажите, что прямая Эйлера треугольника ABC (см. задачу 55595) проходит через центр окружности девяти точек (см. задачу 52511).

Прислать комментарий     Решение

Задача 64492

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Верно ли, что в любом треугольнике точка пересечения медиан лежит внутри треугольника, образованного основаниями биссектрис?

Прислать комментарий     Решение

Задача 64950

Темы:   [ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9,10

Дан треугольник ABC. Прямая, параллельная AC, пересекает стороны AB и BC в точках P и T соответственно, а медиану AM – в точке Q. Известно, что  PQ = 3,  а  QT = 5.  Найдите длину AC.

Прислать комментарий     Решение

Задача 66252

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 7,8,9

В треугольнике ABC высота AH делит медиану BM пополам.
Докажите, что из медиан треугольника ABM можно составить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 98444

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .