Страница:
<< 88 89 90 91
92 93 94 >> [Всего задач: 1007]
|
|
Сложность: 3- Классы: 8,9,10
|
Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь,
который проходит через каждый квадратик ровно один раз (через вершины
квадратиков путь не проходит)?
|
|
Сложность: 3- Классы: 6,7,8
|
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.
Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?
|
|
Сложность: 3- Классы: 8,9,10
|
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так,
что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что m ≠ n?
Страница:
<< 88 89 90 91
92 93 94 >> [Всего задач: 1007]