ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC с углом A, равным 40° и стороной   AB =   на высоте AH взята такая точка D, что  ∠BDC = 140°  и  CD = 1.
Найдите угол между прямыми AB и CD, а также угол B.

   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 563]      



Задача 109670

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 6-
Классы: 9,10,11

Проведем через основание биссектрисы угла A разностороннего треугольника ABC отличную от стороны BC касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через Ka . Аналогично построим точки Kb и Kc . Докажите, что три прямые, соединяющие точки Ka , Kb и Kc с серединами сторон BC , CA и AB соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 66188

Темы:   [ Признаки и свойства касательной ]
[ Поворот (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.

Прислать комментарий     Решение

Задача 102702

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Признаки подобия ]
[ Обыкновенные дроби ]
[ Ортоцентр и ортотреугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC с углом B, равным 50°, и стороной  BC = 3  на высоте BH взята такая точка D, что  ∠ADC = 130°  и  AD = .
Найдите угол между прямыми AD и BC, а также угол CBH.

Прислать комментарий     Решение

Задача 102703

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC с углом A, равным 40° и стороной   AB =   на высоте AH взята такая точка D, что  ∠BDC = 140°  и  CD = 1.
Найдите угол между прямыми AB и CD, а также угол B.

Прислать комментарий     Решение

Задача 116750

Темы:   [ Пятиугольники ]
[ Перегруппировка площадей ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь трапеции ]
[ Теорема косинусов ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

В выпуклом пятиугольнике ABCDE:  ∠A = ∠C = 90°,  AB = AEBC = CDAC = 1.  Найдите площадь пятиугольника.

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .