Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD взяты точки K, L, M и N соответственно, причем AK : KB = DM : MC = $ \alpha$ и  BL : LC = AN : ND = $ \beta$. Пусть P — точка пересечения отрезков KM и LN. Докажите, что NP : PL = $ \alpha$ и  KP : PM = $ \beta$.

Вниз   Решение


Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Внутри цилиндра лежат два шара радиуса r и один шар радиуса 2r так, что каждый шар касается двух других, верхнего основания цилиндра и его боковой поверхности. Найдите радиус основания цилиндра.

ВверхВниз   Решение


В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если известно, что AH = $ {\frac{2}{\sqrt{5}}}$, а BL = 3

ВверхВниз   Решение


Решите ребус:  АХ×УХ = 2001.

ВверхВниз   Решение


Решите ребус:  БАО×БА×Б = 2002.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что площадь одного из треугольников  AB1C1, A1BC1, A1B1C не превосходит:
а) SABC/4;
б)  SA1B1C1.

ВверхВниз   Решение


Три шара, среди которых имеется два одинаковых, касаются плоскости P и, кроме того, попарно касаются друг друга. Вершина прямого кругового конуса принадлежит плоскости P , а ось конуса перпендикулярна к этой плоскости. Все три шара лежат вне конуса, причем каждый из них касается некоторой образующей конуса. Найдите косинус угла между образующей конуса и плоскостью P , если известно, что в треугольнике с вершинами в точках касания шаров с плоскостью P величина одного из углов равна 150o .

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 241]      



Задача 55365

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3
Классы: 8,9

Точка M делит сторону BC треугольника ABC в отношении BM : MC = 2 : 5, Известно, что $ \overrightarrow{AB} $ = $ \overrightarrow{a}$, $ \overrightarrow{AC} $ = $ \overrightarrow{b}$. Найдите вектор $ \overrightarrow{AM}$.

Прислать комментарий     Решение


Задача 102706

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9,10

Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

Прислать комментарий     Решение


Задача 102707

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.

Прислать комментарий     Решение


Задача 102708

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.

Прислать комментарий     Решение


Задача 34961

Темы:   [ Геометрические неравенства (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 9,10,11

Дано 8 действительных чисел: a,b,c,d,,e,f,g,h. Докажите, что хотя бы одно из 6 чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .