ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1007]      



Задача 60409

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Правило произведения ]
Сложность: 2
Классы: 8,9

Сколькими способами, двигаясь по следующей таблице от буквы к букве,

            к            
          в   в          
        а   а   а        
      д   д   д   д      
    р   р   р   р   р    
  а   а   а   а   а   а  
т   т   т   т   т   т   т
можно прочитать слово "квадрат"?

Прислать комментарий     Решение

Задача 60428

Темы:   [ Дискретное распределение ]
[ Классическая комбинаторика (прочее) ]
[ Условная вероятность ]
Сложность: 2
Классы: 8,9,10

В ящике имеется 10 белых и 15 чёрных шаров. Из ящика вынимаются четыре шара. Какова вероятность того, что все вынутые шары будут белыми?

Прислать комментарий     Решение

Задача 78175

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8,9,10

Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?

Прислать комментарий     Решение

Задача 102877

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
Сложность: 2
Классы: 6,7,8

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 102999

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 5,6,7

  – У меня зазвонил телефон.
  – Кто говорит?
  – Слон.
  А потом позвонил Крокодил, а потом позвонили Зайчатки, а потом позвонили Мартышки, а потом позвонил Медведь, а потом позвонили Цапли... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Cколько для этого понадобилось проводов?

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .