ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Разрежьте изображённую на рисунке трапецию на три части и сложите из них квадрат.

Вниз   Решение


Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?

ВверхВниз   Решение


  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

ВверхВниз   Решение


Боковая сторона равнобедренного треугольника равна 2, угол при вершине равен 120o. Найдите диаметр описанной окружности.

ВверхВниз   Решение


В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.

ВверхВниз   Решение


Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1041]      



Задача 97771

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Автор: Анджанс А.

Будем говорить, что две пирамиды соприкасаются гранями, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?

Прислать комментарий     Решение

Задача 98430

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?

Прислать комментарий     Решение

Задача 102879

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
Прислать комментарий     Решение


Задача 103863

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 3
Классы: 6,7

Поля клетчатой доски размером 8×8 будем по очереди закрашивать в красный цвет так, чтобы после закрашивания каждой следующей клетки фигура, состоящая из закрашенных клеток, имела ось симметрии. Покажите, как можно, соблюдая это условие, закрасить

а) 26; б) 28 клеток.

(В качестве ответа расставьте на тех клетках, которые должны быть закрашены, числа от 1 до 26 или до 28 в том порядке, в котором проводилось закрашивание.)

Прислать комментарий     Решение


Задача 103951

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 5,6,7

Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1041]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .