|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Разрежьте изображённую на рисунке трапецию на три части и сложите
из них квадрат. Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?
Определение. Пусть α = (k, j, i) – набор целых неотрицательных чисел, k ≥ j ≥ i. Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам (a, b, c) набора (k, j, i). Боковая сторона равнобедренного треугольника равна 2, угол при вершине равен 120o. Найдите диаметр описанной окружности.
В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы. Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8? |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1041]
Будем говорить, что две пирамиды соприкасаются гранями, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?
На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?
а) 26; б) 28 клеток. (В качестве ответа расставьте на тех клетках, которые должны быть закрашены, числа от 1 до 26 или до 28 в том порядке, в котором проводилось закрашивание.)
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1041] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|