ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число. В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём MN : NP : PQ = 7 : 1 : 2. Найдите углы ромба. Пусть
A1, B1,..., F1 — середины сторон
AB, BC,..., FA произвольного шестиугольника. Докажите, что точки
пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
Треугольник ABC правильный, M — некоторая точка.
Докажите, что если числа AM, BM и CM образуют геометрическую
прогрессию, то знаменатель этой прогрессии меньше 2.
Окружность с центром O касается сторон угла с вершиной M. На одной стороне угла взята точка K, а на другой стороне угла взята точка L так, что Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 187]
Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Решите ребус: БАО×БА×Б = 2002.
В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)
Какое наименьшее натуральное число не является делителем 50!?
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 187]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке