Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число.
Докажите, что сумма длин всех перегородок делится на 4.

Вниз   Решение


В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём  MN : NP : PQ = 7 : 1 : 2.  Найдите углы ромба.

ВверхВниз   Решение


Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.

ВверхВниз   Решение


Треугольник ABC правильный, M — некоторая точка. Докажите, что если числа AM, BM и CM образуют геометрическую прогрессию, то знаменатель этой прогрессии меньше 2.

ВверхВниз   Решение


Окружность с центром O касается сторон угла с вершиной M. На одной стороне угла взята точка K, а на другой стороне угла взята точка L так, что
OK = OL,  OK < OM,  MK ≠ ML.  Известно, что  ML = a,  OM = m,  OK = k.  Найдите MK.

ВверхВниз   Решение


Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 187]      



Задача 103794

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Прислать комментарий     Решение

Задача 103869

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Решите ребус:  БАО×БА×Б = 2002.

Прислать комментарий     Решение

Задача 109423

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7

В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)

Прислать комментарий     Решение

Задача 35582

Темы:   [ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 7,8,9

Какое наименьшее натуральное число не является делителем 50!?

Прислать комментарий     Решение

Задача 97776

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 8,9

Автор: Левин М.

Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .