ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано, что ни для какой стороны треугольника из проведённых к ней высоты, биссектрисы и медианы нельзя составить треугольник.
Доказать, что один из углов треугольника больше чем 135°.

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1354]      



Задача 66674

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Прислать комментарий     Решение


Задача 54458

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Внутри прямоугольного треугольника ABC (угол B — прямой) взята точка D, причём площади треугольников ABD и BCD соответственно в три и в четыре раза меньше площади треугольника ABC. отрезки AD и DC равны соответственно a и c. Найдите BD.

Прислать комментарий     Решение


Задача 102405

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

В трапеции KLMN известно, что LM$ \Vert$KN, $ \angle$KLM = $ {\frac{\pi}{2}}$, LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.

Прислать комментарий     Решение


Задача 102406

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.

Прислать комментарий     Решение


Задача 103917

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Принцип Дирихле (углы и длины) ]
[ Неравенства для углов треугольника ]
Сложность: 4-
Классы: 8,9

Дано, что ни для какой стороны треугольника из проведённых к ней высоты, биссектрисы и медианы нельзя составить треугольник.
Доказать, что один из углов треугольника больше чем 135°.

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .