Страница:
<< 19 20 21 22 23 24 25 >> [Всего задач: 149]
Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?
|
|
Сложность: 3 Классы: 5,6,7
|
Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?
Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Каковы возможные значения n?
Страница:
<< 19 20 21 22 23 24 25 >> [Всего задач: 149]