Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

   Решение

Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 487]      



Задача 103970

Темы:   [ Упаковки ]
[ Теория алгоритмов (прочее) ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Прислать комментарий     Решение


Задача 54543

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Построение треугольников по различным элементам ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте параллелограмм по основанию, высоте и углу между диагоналями.

Прислать комментарий     Решение


Задача 109010

Темы:   [ Диаметр, основные свойства ]
[ Окружности (построения) ]
[ Построение треугольников по различным элементам ]
Сложность: 4-
Классы: 8,9

Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.
Прислать комментарий     Решение


Задача 61144

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 10,11

Докажите, что все корни уравнения  a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.

Прислать комментарий     Решение

Задача 55725

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Треугольник (построения) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трёх данных параллельных прямых.

Прислать комментарий     Решение


Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 487]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .