ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Вниз   Решение


Две окружности пересекаются в точках M и K. Через M и K проведены прямые AB и CD соответственно, пересекающие первую окружность в точках A и C, вторую в точках B и D. Докажите, что  AC || BD.

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, из которой две данные окружности были бы видны под данными углами.

ВверхВниз   Решение


Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

ВверхВниз   Решение


Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

ВверхВниз   Решение


Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

ВверхВниз   Решение


Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 354]      



Задача 35614

Темы:   [ Уравнение плоскости ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Прислать комментарий     Решение


Задача 102713

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0.

Прислать комментарий     Решение


Задача 104032

Темы:   [ Выход в пространство ]
[ Наглядная геометрия в пространстве ]
[ Правильный тетраэдр ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.
Прислать комментарий     Решение


Задача 102714

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;1) параллельно а) оси Ox; б) оси Oy.

Прислать комментарий     Решение


Задача 102717

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Составьте уравнение прямой, проходящей через точку пересечения прямых 3x + 2y - 5 = 0 и x - 3y + 2 = 0 параллельно оси ординат.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .