ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности касаются в точке K. Через точку K
проведены две прямые, пересекающие первую окружность
в точках A и B, вторую — в точках C и D. Докажите, что
AB| CD.
Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o . Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .
Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB. |
Страница: << 1 2 3 4 >> [Всего задач: 20]
На сторонах произвольного остроугольного
треугольника ABC как на диаметрах построены окружности.
При этом образуется три к внешнихк криволинейных треугольника
и один к внутреннийк (рис.). Докажите, что если из
суммы площадей к внешнихк треугольников вычесть площадь
к внутреннегок треугольника, то получится удвоенная площадь
треугольника ABC.
Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.
Две окружности разных радиусов касаются в точке C одной прямой и расположены по одну сторону от неё. Отрезок CD – диаметр большей окружности. Из точки D проведены две прямые, касающиеся меньшей окружности в точках A и B. Прямая, проходящая через точки C и A, образует с общей касательной к окружностям в точке C угол 75° и пересекает большую окружность в точке M. Известно, что AM =
Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.
Две окружности разных радиусов касаются в точке A одной и
той же прямой и расположены по разные стороны от неё. Отрезок AB
-- диаметр меньшей окружности. Из точки B проведены две прямые,
касающиеся большей окружности в точках M и N. Прямая, проходящая
через точки M и A, пересекают меньшую окружность в точке K.
Известно, что
MK =
Страница: << 1 2 3 4 >> [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке