ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.
В равнобедренную трапецию ABCD ( AB=CD ) вписана
окружность. Пусть M – точка касания окружности
со стороной CD , K – точка пересечения окружности
с отрезком AM , L – точка пересечения окружности с
отрезком BM . Вычислите величину На плоскости даны 16 точек (см. рисунок). а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата. Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))? |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 210]
Докажите иррациональность следующих чисел: а) б) в) г) д) cos 10° ; е) tg 10° ; ж) sin 1° ; з) log23 .
Положительные числа x, y, z обладают тем свойством, что
arctg x + arctg y + arctg z <
Доказать, что сумма этих чисел больше их произведения.
Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))?
а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 210]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке