ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Агеев С.М.

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 133]      



Задача 77878

Темы:   [ Уравнения в целых числах ]
[ Неравенства с модулями ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 10,11

Сколько различных целочисленных решений имеет неравенство  |x| + |y| < 100?

Прислать комментарий     Решение

Задача 109950

Темы:   [ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Арифметическая прогрессия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Губин Я.

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.
Прислать комментарий     Решение


Задача 107859

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9

Автор: Агеев С.М.

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
Прислать комментарий     Решение


Задача 65430

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10,11

Василиса Премудрая расставляет все натуральные числа от 1 до n², где  n > 1,  в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?

Прислать комментарий     Решение

Задача 73594

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .